
PHYSICAL REVIEW E MAY 1998VOLUME 57, NUMBER 5
Fluctuation-dissipation theorem and quantum tunneling with dissipation

Kazuo Fujikawa
Department of Physics, University of Tokyo Bunkyo-ku, Tokyo 113, Japan

~Received 24 December 1997!

We suggest taking the fluctuation-dissipation theorem of Callen and Welton@Phys. Rev.83, 34 ~1951!# as a
basis to study quantum dissipative phenomena~such as macroscopic quantum tunneling! in a manner analo-
gous to the Nambu-Goldstone theorem for spontaneous symmetry breakdown@Phys. Rev.122, 345 ~1961!;
Nuovo Cimento19, 154~1961!#. It is shown that the essential physical contents of the Caldeira-Leggett model
@Phys. Rev. Lett.46, 211 ~1981!; Ann. Phys.~N.Y.! 149, 374 ~1983!# such as the suppression of quantum
coherence by Ohmic dissipation are derived from general principles only, namely, the fluctuation-dissipation
theorem and unitarity and causality~i.e., dispersion relations!, without referring to an explicit form of the
Lagrangian. An interesting connection between quantum tunneling with Ohmic dissipation and Anderson’s
orthogonality theorem is also noted.@S1063-651X~98!03505-3#

PACS number~s!: 05.30.2d, 03.65.2w
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I. FLUCTUATION-DISSIPATION THEOREM

The quantum dissipative phenomena@1# are related to the
study of irreversible processes in quantum statistical m
chanics and as such they have been studied by many au
in the past, in particular, in the framework of linear-respon
theory@2,3#. A combination of dissipation with quantum tun
neling adds further interesting aspects to the subject and
tentially covers a wide class of phenomena in various fie
of physics. In the analysis of macroscopic quantum tunne
with dissipation, the model defined by Caldeira and Legg
@4# is widely used. One of the essential ingredients of th
model is to simulate the effects of dissipation by an infin
number of harmonic oscillators. It has been discussed
convincing way by Feynman and Vernon@3# and also by
Caldeira and Leggett themselves@4# that this method of us-
ing an infinite number of harmonic oscillators is in fact qu
general. Nevertheless, it may be interesting to demons
explicitly that the quantum dissipative phenomena can
studied in a model-independent manner without introduc
an infinite number of harmonic oscillators. Of course, if o
wants to do without oscillators, one needs an alternative
put to define the problem. We want to take an input that is
general as possible and yet manageable.

We propose here taking the fluctuation-dissipation th
rem of Callen and Welton@1# as a basic principle to stud
quantum dissipative phenomena. It is then shown that
essential physical contents of the Caldeira-Leggett mo
such as the suppression of quantum coherence by Oh
dissipation are reproduced by a combination of
fluctuation-dissipation theorem and dispersion relations~or
unitarity and causality!. In this way we can set the quantu
tunneling with dissipation in a broader perspective and
Caldeira-Leggett model is recognized as a minimal Lagra
ian model that incorporates the essential aspects of ma
scopic quantum tunneling with dissipation in the lowest
der of perturbation. An interesting similarity betwee
quantum tunneling with Ohmic dissipation and the impur
atom hopping problem in a metal, which is related to t
Anderson’s orthogonality theorem, is also revealed in
present approach.
571063-651X/98/57~5!/5023~7!/$15.00
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We first recapitulate the basic reasoning for t
fluctuation-dissipation theorem@1# in a way that is conve-
nient for our application. We start with the Hamiltonian

H5H0~q!1qQ, ~1!

whereq stands for the freedom we are interested in, which
described byH0(q), andQ describes the freedom associat
with the medium~or dissipative system!. Note thatQ stands
for quite complicated dynamical degrees of freedom. T
choice of Eq.~1! may be justified in the spirit of linear
response theory@2,3#.

To specify the dynamics ofQ @and thus the Hamiltonian
H0(Q) indirectly#, we consider the following gedanken ex
periment. We consider the external~given! sinusoidal motion
of the variableq,

qext~ t !5qext~0!sin vt, ~2!

with small qext(0), and weadopt the interaction Hamiltonian

HI85qext~ t !Q, ~3!

with the dynamicsH0(q) switched off. The lowest-orde
perturbation~Fermi’s golden rule! with HI8 gives the transi-
tion probability ~starting at the stateuEn& of the Q system!

w5
p

2\
qext~0!2$ z^En1\vuQuEn& z2r~En1\v!

1 z^En2\vuQuEn& z2r~En2\v!%, ~4!

wherer(En) stands for the state density of theQ system at
E5En . The energy absorption rate by the systemQ is ob-
tained by multiplying\v by the difference of the two term
in Eq. ~4!, the absorption and emission terms, as

pv

2
qext~0!2$ z^En1\vuQuEn& z2r~En1\v!

2 z^En2\vuQuEn& z2r~En2\v!%. ~5!
5023 © 1998 The American Physical Society
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The energy absorption per unit time at temperatureT is thus
given by

pv

2
qext~0!2(

n
$ z^En1\vuQuEn& z2r~En1\v!

2 z^En2\vuQuEn& z2r~En2\v!% f ~En!, ~6!

with f (En) the ~normalized! Boltzmann factor, which satis
fies f (En1\v)/ f (En)5exp(2\v/kT). This final expression
~6! for the dissipative power can also be written as

~power!5
pv

2
qext~0!2vE

0

`

dEr~E! f ~E!

3$ z^E1\vuQuE& z2r~E1\v!

2 z^E2\vuQuE& z2r~E2\v!%

5
pv

2
qext~0!2v~12e2\v/kT!

3E
0

`

dE$ z^E1\vuQuE& z2r

3~E1\v!r~E! f ~E!%, ~7!

where we usedz^En2\vuQuEn& z5 z^EnuQuEn2\v& z and
f (E1\v)/ f (E)5e2\v/kT after a shift in the integration
variable.

On the other hand, the presence of theinduceddissipation
~7! for the sinusoidal given motionqext(t) suggests a phe
nomenological dissipative force~or reaction! acting on
qext(t),

F52R~v!q̇ext~ t !, ~8!

whereR(v) stands for the dissipative coefficient~resistance!
for the sinusoidal motion with frequencyv. We do not ques-
tion the microscopic dynamics that produces the spec
form of the dissipative force in Eq.~8!. The energy dissipa
tion by this induced friction is given by

~energy dissipation!/~unit time!

52Fq̇ext~ t !

5R~v!q̇ext~ t !2

5
v2

2
R~v!qext~0!2, ~9!

where the overbar shows the time averaging.
If one compares the macroscopic expression~9! with the

microscopic expression~7!, one finds

R~v!5
p

v
~12e2\v/kT!E

0

`

z^E1\vuQuE& z2

3r~E1\v!r~E! f ~E!dE. ~10!

Therefore, one obtains
c

S 2

p D \v

2
coth~\v/2kT!R~v!

5\E
0

`

~11e2\v/kT!z^E1\vuQuE& z2

3r~E1\v!r~E! f ~E!dE

5\E
0

`

$ z^E1\vuQuE& z2r~E1\v!

1 z^E2\vuQuE& z2r~E2\v!%

3r~E! f ~E!dE, ~11!

where we usedz^En1\vuQuEn& z5 z^EnuQuEn1\v& z, r(E)
50 for E,0, andf (E1\v)/ f (E)5e2\v/kT combined with
a shift in integration variable. This is a local version of th
fluctuation-dissipation theorem for each value ofv.

If one integrates the above relation~11! with respect tov,
one has

2

pE0

`\v

2
coth~\v/2kT!R~v!dv

5E
0

` H E
0

`

z^E1\vuQuE& z2r~E1\v!d~\v!

1E
0

`

z^E2\vuQuE& z2r~E2\v!d~\v!J
3r~E! f ~E!dE

5E
0

`

^EuQ2uE&r~E! f ~E!dE[^Q2& ~12!

after a change of the order of integration inE and\v. We
thus obtain the well-known theorem of Callen and Welt
@1#

2

pE0

`\v

2
coth~\v/2kT!R~v!dv5

2

pE0

`

E~v,T!R~v!dv

5^Q2&. ~13!

The factor

E~v,T!5
1

2
\v1

\v

e\v/kT21
~14!

stands for the mean energy of thebosonicharmonic oscilla-
tor with the zero-point energy12 \v included. The coefficient
R(v) may generally depend on the temperature, but in
above analysisR(v) is assumed to be effectively indepe
dent of the temperature in the region we are interested in
the context of the present analysis, one should rather re
Eq. ~10! as a specification of the medium for a givenR(v).

Although there are some criticisms@5# about the basis for
the linear-response theory@2# and the fluctuation-dissipation
theorem itself@1#, we take relation~13! as the starting point
of our specification of the medium that induces the effect
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frictional force in Eq.~8! instead of specifying the Hamil
tonianH0(Q) explicitly. One may draw the following intui-
tive picture for theorem~13!.

The existence of dissipation suggests the presenc
some~collective! excitation in the medium. The spectrum
such excitation~or force field! is reflected in the resistanc
R(v), which measures theon-shell radiationof such an ef-
fective excitation mode@see Eqs.~8! and ~9!#. Namely, the
excitation exists for the frequencyv for which R(v)Þ0.
Also, such effective excitation, if classically recognizab
should necessarily bebosonic. Combined with a dimensiona
analysis, it is thus natural to have a general expression~13!.

In this paper, we propose to understand relation~13! in a
manner analogous to the Nambu-Goldstone theorem@6#,
which asserts the inevitable presence of a massless excit
if a continuous symmetry is spontaneously broken. In c
trast, relation~13! asserts that the presence of dissipat
specified byR(v) inevitably leads to the effective excitatio
whose energy spectrum at temperatureT is specified by
(2/p)E(v,T)R(v), at least in the regionT.0.

In the following, we demonstrate that some of the ess
tial physical contents of the Caldeira-Leggett model@4# are
derived from general principles only, namely, theorem~13!
and unitarity and causality~i.e., dispersion relations! without
referring to an explicit form of Lagrangian. The prese
analysis is partly motivated by a field-theoretical reformu
tion @7# of the Caldeira-Leggett model, where the unitar
and causality are manifestly exhibited. In fact, the act
analysis of dissipative tunneling below closely follows th
in Ref. @7#.

II. QUANTUM TUNNELING WITH DISSIPATION

We are mainly interested in the quantum tunneling p
nomena~rather than thermally assisted tunneling! and thus
we work on the case of zero temperature. The fluctuati
dissipation theorem in the form~13! is still useful to provide
a definite regularization of the manipulations in Eqs.~7!–
~11!, even though we work at zero temperature.

We start with the calculation of the decay rate of the st
un& with energyEn to the stateum& with energyEm for theq
system described byH0(q) in Eq. ~1!. By takingHI5qQ as
a perturbation, the lowest-order perturbation formula give

w~n→m1\v!5
2p

\
z^muqun& z2z^\vuQu0& z2

3d~En2Em2\v!, ~15!

or if one takes a sum over final states of the environme
systemQ, we obtain

w~n→m1\v!5
2p

\
z^muqun& z2E z^\vuQu0& z2

3d~En2Em2\v!r~\v!d~\v!

5
2p

\
z^muqun& z2

2

p

\v

2
R~v!

1

\ U
\v5En2Em

,

~16!
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where we used the local version of the fluctuation-dissipat
theorem~11! in the form

z^\vuQu0& z2r~\v!d~\v!5
2

p

\v

2
R~v!dv ~17!

for v>0 at T50. We thus obtain the decay rate

w~n→m1\v!5
2

\
z^muqun& z2S En2Em

\ DRS En2Em

\ D
3u~En2Em!, ~18!

with the step functionu(x).
In the following we first concentrate on the Ohmic diss

pation, for which we haveR(v)5h5const

w~n→m1\v!5
2h

\
z^muqun& z2S En2Em

\ D u~En2Em!.

~19!

In particular, if theq system is described by a simple ha
monic oscillatorH0(q)5 (1/2M ) p21 (Mv2/2) q2, we ob-
tain

w~n→m1\v!5
2h

\ S \

2Mv D S En2Em

\ D U
\v5En2Em

5
h

M
dm,n21 . ~20!

The half-decay width is obtained from Eq.~20! as

1

2
Gn5

1

2
\(

m
w~n→m1\v!5

1

2
\

h

M
. ~21!

This expression ofGn is consistent with the equation of mo
tion for the damped oscillator

Mq̈1hq̇1Mv2q50 ~22!

and also with our starting assumption in Eq.~8!.
If one denotes the proper self-energy correction to

stateun& of the q system withH0(q)un&5Enun& by Sn(E),
i.e., if the Green’s function is written aŝnu i /(E2Ĥ
1 i e)un&5 i @E2En1 i e1Sn(E)#21, one can write a disper
sion relation

Sn~E!5
1

pE0

L Im Sn~E8!dE8

E82E2 i e
, ~23!

with an infinitesimal positive constante andL a cutoff pa-
rameter. The total Hamiltonian is written asĤ[H0(q)
1qQ1H0(Q). The imaginary~or absorptive! part ofSn(E)
is given by Eqs.~16! and ~19! as ~in the lowest order inh)
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Im Sn~E![
1

2
Gn~E!

5p(
m

z^muqun& z2
2

p

\v

2
R~v!

1

\ U
\v5E2Em

5
h

\(
m

z^muqun& z2~E2Em!u~E2Em!, ~24!

which is a manifestation of unitarity~an analog of the optica
theorem!. The dispersion relation~up to all orders in pertur-
bation ofqQ) follows from the fact thatSn(E) is analytic in
the upper-half plane due to causality andSn(E) is real and
regular along the negative real axis as a result of posi
definiteness of the HamiltonianH0(q)1H0(Q). One may
continueSn(E) to the lower-half plane along the negativ
real axis bySn(E2 i e)5Sn(E1 i e)!. The imaginary part of
Sn(E) arises since the stateun& is not an eigenstate of th
total Ĥ. @Relations~23! and~24! are of course derived from
second order perturbation theory. What we emphasize he
that relation~23! is of more general validity.#

We then have

Sn~E!5
h

p\(
m

z^muqun& z2E
0

L~E82Em!u~E82Em!dE8

E82E2 i e

5
h

p\(
m

z^muqun& z2E
Em

L ~E82Em!dE8

E82E2 i e

.
h

p\(
m

z^muqun& z2E
0

L ~\v!d~\v!

\v1Em2E2 i e

5
h

p\(
m

z^muqun& z2H \L1~E2Em!

3E
0

L dv

v1~Em2E!/\2 i e J . ~25!

If we apply a very specific subtraction procedure to t
above dispersion relation by subtracting the constantL term
in expression~25!, we obtain

Sn~E!5
h

p\(
m

z^muqun& z2~E2Em!

3E
0

L dv

v1~Em2E!/\2 i e
. ~26!

The above subtraction convention of Caldeira and Leg
@4# amounts to setting the contribution of the stateum& to
Sn(E) to vanish atE5Em : In other words, the dissipative
interaction does not influenceSn(E) at the vanishing fre-
quencyv50. Physically this means that the shape of t
potential for theq system ~which is defined at the stati
limit ! is not influenced by the term (hL/p) ^nuq2un& in-
duced by dissipation. This prescription of subtraction is
crux of the macroscopicquantum tunneling formulated in
@4#.

For sufficiently largeL, we have
e

is

tt

e

e

Sn~En!5
h

p\(
m

z^muqun& z2~En2Em!

3F lnU L2@~En2Em!/\#

~En2Em!/\ U1 ipu~E2Em!G
.

h

p\ H 2
\2

2M
ln

L

m
1(

m
z^muqun& z2~En2Em!

3F lnU \m

En2Em
U1 ipu~En2Em!G J , ~27!

where we used the sum rule

(
m

^nuqum&^muqun&~Em2En!5
\2

2M
, ~28!

which follows from

†q,@q,H0~q!#‡52
\2

M
, ~29!

independently of the detailed form of the potentialV(q) for
the q system,H0(q)5 (1/2M ) p21V(q).

The corrected energy eigenvalue of the stateun& is thus
given by

En
~1!5En2Re Sn~En!

5En1
\h

2pM
ln

L

m
2

h

p\(
m

z^muqun& z2~En

2Em!lnU \m

En2Em
U, ~30!

wherem specifies an arbitrary renormalization point, and t
half-width of the stateun& is given by

Gn

2
5Im Sn~En!5

h

\(
m

z^muqun& z2~En2Em!u~En2Em!,

~31!

which is in fact the input to the dispersion relation~23!.
These relations are identical to those in a field-theoret
approach to the quantum tunneling with dissipation@7#.

Our formula~25! is valid for the general potential prob
lem and is not restricted to quantum tunneling with dissip
tion. We now concentrate on the tunneling problem~to be
precise, quantum coherence! for which we have~isolated!
nearly degenerate states arising from quantum tunnel
From the formula forEn

(1) in Eq. ~30!, we obtain@7#

e1[E1
~1!2E0

~1!.e2
2h

p\
z^0uqu1& z2e lnS \v0

e D ~32!

for the lowest two states, which arise from the splitting i
duced by tunneling, of adeepdouble-well potentialV(q)
with e[E12E0; the frequencyv0 , which plays the role of
the cutoff parameter, is the curvature at the bottom of
symmetric double-well potential. The energy splittinge1
stands for the fundamental order parameter of macrosc
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quantum tunneling. It is shown that the effects of other sta
can be neglected for a deep potential.

The ‘‘renormalization-group’’ equation

b5v0

de1~v0!

dv0
52h̄e.2h̄e1~v0!, ~33!

with

h̄[
2h

p\
z^0uqu1& z2, ~34!

gives an ‘‘improved’’ formula

e15eS e

\v0
D h̄

~35!

if one normalizese1(\v05e)5e. The self-consistency an
satz@8# obtained by setting the infrared cutoff ate1 , namely,
e15e(e1 /\v0) h̄, then gives rise to the well-known formul
@4#

e15eS e

\v0
D h̄/~12h̄ !

, ~36!

which suggests a strong suppression of quantum coher
for h̄→1.

Super-Ohmic dissipation

We next analyze the case of super-Ohmic dissipation

R~v!5hv2, ~37!

which is related to the emission of electromagnetic fields
the vacuum@1#. The calculation proceeds in a manner ide
tical to that of Ohmic dissipation and we obtain

Sn~E!5
h

p\(
m

z^muqun& z2

3E
0

L~E82Em!@~E82Em!/\#2u~E82Em!dE8

E82E2 i e
,

~38!

with

Im Sn~E!5
h

\(
m

z^muqun& z2~E2Em!S E2Em

\ D 2

u~E2Em!.

~39!

After the subtraction as in Eq.~26! above, we obtain

Sn~E!5
h

p(
m

z^muqun& z2H L2

2 S E2Em

\ D1LS E2Em

\ D 2

1S E2Em

\ D 3F lnU \L

E2Em
U1 ipu~E2Em!G J .

~40!

We thus have
s

ce

n
-

Sn~En!52
\h

4pM
L21

h

pM2
L^nup2un&

1
h

p(
m

z^muqun& z2H S En2Em

\ D 3F lnU \L

En2Em
U

1 ipu~En2Em!G J , ~41!

where we used the sum rules~28! and

(
m

z^muqun& z2~En2Em!25
\2

M2
^nup2un&. ~42!

The second term on the right-hand side of Eq.~41! modifies
the kinetic term of the HamiltonianH0(q)5 (1/2M ) p2

1V(q) for the q system and it may be natural to subtract
away in the spirit of the macroscopic quantum tunneling
Caldeira and Leggett@4#.

We thus finally obtain the corrected eigenvalue to the
der linear inh,

En
~1!5En2Re Sn~En!5En1

\h

4pM
L2

2
h

p(
m

z^muqun& z2S En2Em

\ D 3

lnU \L

En2Em
U,

~43!

where the second term proportional toL2 does not influence
the observable energy splitting between two energy eigen
ues.

It has been shown in Ref.@7# that one obtains the energ
splitting of lowest two levels in the deep double-well pote
tial V(q) from Eq. ~43! as @see also Eq.~32!#

e1.e1
hv0

2pM Fe813e lnS L

v0
D G , ~44!

where e8 is the tunneling energy splitting of the third an
fourth energy levels in the deep double-well potential. If o
accepts the above subtraction procedure, which appears
reasonable in the spirit of the Caldeira-Leggett model,
tunneling splitting ~and, consequently, tunneling itself! is
rather enhanced by the super-Ohmic dissipation for asmall
h.

III. DISCUSSION AND CONCLUSION

We have demonstrated that some of the essential phy
contents of the Caldeira-Leggett model for the macrosco
quantum tunneling with dissipation can be reproduced fr
the fluctuation dissipation theorem of Callen and Welt
~13! and the dispersion relations~or unitarity and causality!.
The existence of dissipation implies a fluctuation in the fo
field, which in turn modifies the tunneling frequency via di
persion relations. The present approach is consistent wi
field-theoretical formulation of the Caldeira-Leggett mod
in Ref. @7#, where the unitarity and causality are explicit
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5028 57KAZUO FUJIKAWA
incorporated. An explicit form of the Lagrangian contai
more information and thus one can explicitly evaluate c
rections to the energy eigenvalue in the second order oh;
see, for example,@7#.

We note that formula~30! is also valid for a more genera
class of interaction between theq systemH0(q) and theQ
systemH0(Q) defined by

HI5F~q!Q. ~45!

In this case formula~30! is replaced by

En
~1!5En2

h

p\(
m

z^muF~q!un& z2~En2Em!lnU \L

En2Em
U.
~46!

The dynamics ofH0(Q), which is characterized byR(v), is
specified by a diagnosis by means ofHI85qext(t)Q in Eq.
~3!, but we can choose a more general interaction Eq.~45!
for an actual analysis. The analysis of quantum cohere
such as Eq.~32! is, however, dependent on the detailed pro
erties ofF(q).

If one draws an analogy of quantum dissipative pheno
ena with spontaneous symmetry breakdown characterize
the Nambu-Goldstone theorem@6#, which specifies the zero
mass excitation of the vacuum, the present approach co
sponds to a specification of Nambu-Goldstone bosons
their physical implications on the basis of current alge
and low-energy theorem. On the other hand, the Calde
Leggett model corresponds to an effective field theory~or
nonlinears model! for Nambu-Goldstone bosons; an effe
tive field theory, once an explicit form of the Lagrangian
given, naturally contains more information, thoughnot all of
the properties of the effective Lagrangian stand for the
neric properties of Nambu-Goldstone bosons. In the con
of quantum dissipation, it is known@3# that any system of
dissipativeQ freedom can be approximated by an infin
number of harmonic oscillators if the second order in pert
bation @i.e., linear response as in Eq.~4!# yields satisfactory
accuracy. However, the true dynamics of theQ system could
of course be quite different from an infinite number of ha
monic oscillators. As for practical physical implications
this consideration, the behavior of Eq.~36! for h̄→1 is more
dependent on the detailed model of theQ system since it is
sensitive to the detailed dynamics in the higher orders oh̄;
our analysis of Eq.~36! is valid for h̄!1.

We also note an interesting similarity between the qu
tum tunneling with Ohmic dissipation and the impurity ato
hopping problem in a metal@9#. In the latter problem, the
atom is dressed by conduction electrons that give rise to
-

ce
-

-
by

re-
nd
a
a-

-
xt

-

-

-

n

effect similar to dissipation. The effective dressed hopp
frequencyDe f f /\ is obtained at zero temperature as@9#

De f f5DS D

D D K

, ~47!

whereD/\ stands for the bare hopping frequency andD is
the Fermi energy, withK a positive coupling constant. In
fact, the entire derivation of Eq.~47! in @9# is almost identi-
cal to our calculation of the Ohmic dissipation in Eq.~35!.
The interaction term in the atom hopping has the structu

HI5sx(
k8,k

Nk8,kak8
† ak ~48!

in the lowest two-level truncation of the atomic states d
scribed by the Pauli matrixsx andak andak

† stand for an-
nihilation and creation operators of the conduction electr
The second-order perturbation theory gives rise to a rela
corresponding to the dispersion relation in Eq.~23!. The as-
sumption of slowly varyinguNk8,ku2 after the angular integra
of k and k8 gives rise to an~effective! Ohmic dissipation
@i.e., R(v)5const in our notation#, as is expected for a
charge movement in a metal. In other words,HI in Eq. ~48!
is effectively simulated by the fluctuation-dissipation the
rem of Callen and Welton with\v5e(k8)2e(k) in the re-
stricted domain of frequency\v and temperature. Kondo@9#
suggests that the above reduction of the hopping freque
~47! is understood as a variant of Anderson’s orthogona
theorem @10# ~i.e., the overlap integral of two Fermi ga
states decreases when a large number of degrees of free
are involved!. This viewpoint may provide an alternative in
teresting physical picture for the suppression of quant
tunneling with Ohmic dissipation@11#, although a precise
correspondence between these two ideas, Ohmic dissipa
and the orthogonality theorem, remains to be clarified.

A theoretical basis for the fluctuation-dissipation theore
compared with the Nambu-Goldstone theorem is less so
mainly due to the difficulty in describing a deviation from
thermal equilibrium, but if one observes dissipative pheno
ena characterized by a well-definedR(v), one may specify
the essential physical properties of the dissipative med
by the relation~10! and the theorem~13!. A message of the
present paper is that this information alone is sufficient
analyze the essential physical effects of dissipation on m
roscopic quantum coherence.
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