PHYSICAL REVIEW E VOLUME 57, NUMBER 5 MAY 1998

Fluctuation-dissipation theorem and quantum tunneling with dissipation
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We suggest taking the fluctuation-dissipation theorem of Callen and Wéhoys. Rev83, 34 (195)] as a
basis to study quantum dissipative phenomé@nech as macroscopic quantum tunneliilga manner analo-
gous to the Nambu-Goldstone theorem for spontaneous symmetry breakebys Rev.122, 345 (1961);
Nuovo Cimental9, 154(1961)]. It is shown that the essential physical contents of the Caldeira-Leggett model
[Phys. Rev. Lett46, 211 (1981); Ann. Phys.(N.Y.) 149 374 (1983] such as the suppression of quantum
coherence by Ohmic dissipation are derived from general principles only, namely, the fluctuation-dissipation
theorem and unitarity and causalifye., dispersion relationswithout referring to an explicit form of the
Lagrangian. An interesting connection between quantum tunneling with Ohmic dissipation and Anderson’s
orthogonality theorem is also notg1063-651X98)03505-3

PACS numbgs): 05.30—-d, 03.65-w

I. FLUCTUATION-DISSIPATION THEOREM We first recapitulate the basic reasoning for the
fluctuation-dissipation theoreffl] in a way that is conve-
The quantum dissipative phenomdii are related to the nient for our application. We start with the Hamiltonian
study of irreversible processes in quantum statistical me-
chanics and as such they have been studied by many authors H=Ho(a)+aQ, (1)
in the past, in particular, in the framework of linear-response ] ] o
theory[2,3]. A combination of dissipation with quantum tun- Where_q stands for the freedom we are interested in, Wh_lch is
neling adds further interesting aspects to the subject and pélescribed byHo(q), andQ describes the freedom associated
tentially covers a wide class of phenomena in various fieldgvith the medium(or dissipative systeinNote thatQ stands
of physics. In the analysis of macroscopic quantum tunnelindor quite complicated dynamical degrees of freedom. The
with dissipation, the model defined by Caldeira and Legget€hoice of Eq.(1) may be justified in the spirit of linear-
[4] is widely used. One of the essential ingredients of theifesponse theor}2,3].
model is to simulate the effects of dissipation by an infinite  TO specify the dynamics o [and thus the Hamiltonian
number of harmonic oscillators. It has been discussed in &o(Q) indirectly], we consider the following gedanken ex-
convincing way by Feynman and Verng8] and also by Periment. We consider the exterriglven) sinusoidal motion
Caldeira and Leggett themselvis that this method of us- Of the variableq,
ing an infinite number of harmonic oscillators is in fact quite
general. Nevertheless, it may be interesting to demonstrate Jext(t) = dexd0)sin wt, (]
explicitly that the quantum dissipative phenomena can be
studied in a model-independent manner without introducingVith small cx(0), and weadopt the interaction Hamiltonian
an infinite number of harmonic oscillators. Of course, if one

wants to do without oscillators, one needs an alternative in- H| =0exd1)Q, ©)
put to define the problem. We want to take an input that is as
general as possible and yet manageable. with the dynamicsHy(q) switched off. The lowest-order

We propose here taking the fluctuation-dissipation theoperturbation(Fermi's golden rulgwith H| gives the transi-
rem of Callen and Weltofil] as a basic principle to study tion probability (starting at the statfE,,) of the Q system
guantum dissipative phenomena. It is then shown that the
essential physical contents of the Caldeira-Leggett model T ) )
such as the suppression of quantum coherence by Ohmic ~ W= 57 ex{(0) {KEn+ 7 0|QIE)p(Enthiw)
dissipation are reproduced by a combination of the
fluctuation-dissipation theorem and dispersion relatiors +(En— | QIE)Pp(Er—fiw)}, 4
unitarity and causality In this way we can set the quantum
tunneling with dissipation in a broader perspective and thevherep(E,) stands for the state density of tiesystem at
Caldeira-Leggett model is recognized as a minimal Lagrange=E,,. The energy absorption rate by the systénis ob-
ian model that incorporates the essential aspects of macreained by multiplyingh « by the difference of the two terms
scopic quantum tunneling with dissipation in the lowest or-in Eq. (4), the absorption and emission terms, as
der of perturbation. An interesting similarity between

guantum tunneling with Ohmic dissipation and the impurity TO ) )

atom hopping problem in a metal, which is related to the 5 ex(0) {(En+ 7 0|QIEN)p(En+hiw)
Anderson’s orthogonality theorem, is also revealed in the

present approach. —(En—fw|QIE)|Pp(En—fiw)}. (5)
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given by > coth i w/2kT)R(w)

The energy absorption per unit time at temperafuiis thus ( 2) ho

002 {KEn+ 0| QIE)P(Ent o) = @re TE oQIBE

~KEr—wl|QIENPP(E—hw)(Er),  (6) Xp(Ethw)p(E)H(E)E

with f(E,) the (normalized Boltzmann factor, which satis-
fies f(E,+ A w)/f(E,)=exp(fAw/kT). This final expression
(6) for the dissipative power can also be written as

4 [ I(E+holQIEIPo(E+ ho)

+[(E-%w|QIE)Pp(E~fiw)}

. L (- X p(E)f(E)dE, (1)
(powen = 0u,(0)% | “dER(E)1(E)
where we use§ E,+7%w|Q|E.)|=[En|Q|En+Aw)|, p(E)
=0 for E<0, andf(E+#Aw)/f(E)=e "“/T combined with
a shift in integration variable. This is a local version of the
fluctuation-dissipation theorem for each value«of

If one integrates the above relatighl) with respect tav,
one has

X{(E+%w|QE)*p(E+hw)
~(E-#%w|QIE)*p(E-fw)}

mTw
= quxt(o)zw( 1— e helkT)

* 2 2 (*hw
X | dE{(E+hw|Q|E)[p —| & cothfiw/kT)R(w)dw
0 0

X (E+h0)p(E)f(E)}, @) :J U E+ 10| QE)Po(E+ho)d(fiw)
o|Jo
where we used(E,—#%o|Q|E,)|=|E,|Q|E,—#%w)| and
f(E+Aw)/f(E)=e /KT after a shift in the integration
variable.
On the other hand, the presence of itguceddissipation

+ | KE—holQIE)Fp(E-hwdto)

(7) for the sinusoidal given motioq.,{(t) suggests a phe- Xp(E)(E)IE
nomenological dissipative forc€or reaction acting on m
Oex(t), =fo (EIQ?E)p(E)f(E)dE=(Q?) 12

F=~R(®)dex(V), ® after a change of the order of integrationBnand# w. We

whereR(w) stands for the dissipative coefficiemésistance Egﬁj s obtain the well-known theorem of Callen and Welton

for the sinusoidal motion with frequeney. We do not ques-
tion the microscopic dynamics that produces the specific
form of the dissipative force in Eq8). The energy dissipa-

tion by this induced friction is given by

(energy dissipatiof(unit time)

= —FQex(t)

= R(w)qext(t)z
2

= 5 R(©)dex(0)?, ©

where the overbar shows the time averaging.
If one compares the macroscopic expressi@®nwith the
microscopic expressio(¥), one finds

R(w)=g(l—e’ﬁ“””)f:|<E+ﬁw|Q|E>|2
X p(E+#w)p(E)f(E)dE. (10)

Therefore, one obtains

2 [*hw 2 (=
—f —COtHﬁwleT)R(w)de—f E(w,T)R(w)dw
mJo 2 mTJo

=(Q?). (13)
The factor
1 hw
E(w,T)ZEﬁaH-W (14)

stands for the mean energy of thesonicharmonic oscilla-
tor with the zero-point energy% o included. The coefficient
R(w) may generally depend on the temperature, but in the
above analysifR(w) is assumed to be effectively indepen-
dent of the temperature in the region we are interested in. In
the context of the present analysis, one should rather regard
Eq. (10) as a specification of the medium for a givR(w).
Although there are some criticisthS] about the basis for
the linear-response theofg] and the fluctuation-dissipation
theorem itself 1], we take relatio(13) as the starting point
of our specification of the medium that induces the effective
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frictional force in Eq.(8) instead of specifying the Hamil- where we used the local version of the fluctuation-dissipation
tonianHy(Q) explicitly. One may draw the following intui- theorem(11) in the form
tive picture for theoreng13).
The existence of dissipation suggests the presence of 2 ho
some(collective excitation in the medium. The spectrum of [(7 0| Q|0)p(hw)d(hw)=— 7R(w)dw 17
such excitation(or force field is reflected in the resistance m
R(w), which measures then-shell radiationof such an ef-
fective excitation mod¢see Eqs(8) and (9)]. Namely, the for =0 atT=0. We thus obtain the decay rate
excitation exists for the frequency for which R(w)#0.
Also, such effective excitation, if classically recognizable, 2 n—Em| _[En—Em
should necessarily H@osonic Combined with a dimensional w(n—m+fiw)= %|<m|q|n>|2( 7 >R< 7 )
analysis, it is thus natural to have a general expresdign
In this paper, we propose to understand relatibd) in a
manner analogous to the Nambu-Goldstone theof6in
which asserts the inevitable presence of a massless excitatiaith the step functiorg(x).
if a continuous symmetry is spontaneously broken. In con- In the following we first concentrate on the Ohmic dissi-
trast, relation(13) asserts that the presence of dissipationpation, for which we hav&®(w) = = const
specified byR(w) inevitably leads to the effective excitation

X 6(E,—Ep), (18

whose energy spectrum at tempergtt]’reis specified by 279 o[ En—Enm
(2/m)E(w,T)R(w), at least in the regiof=0. w(n—m+fw)= 7|(m|q|n>| a 0(E,—E.).
In the following, we demonstrate that some of the essen- (19

tial physical contents of the Caldeira-Leggett mogH! are

derived from general principles only, namely, theor&iB) , , ) i )

and unitarity and causalitf.e., dispersion relationsvithout N Particular, if theq system is d(zescrlbedzby a simple har-
referring to an explicit form of Lagrangian. The presentMonic oscillatorHy(q) = (1/2M) p°+ (Mw%/2)q*, we ob-
analysis is partly motivated by a field-theoretical reformula-tain

tion [7] of the Caldeira-Leggett model, where the unitarity

and causality are manifestly exhibited. In fact, the actual 2n( h E,—En
analysis of dissipative tunneling below closely follows that ~ W(N—Mm+fw)=—=| Su— 7
in Ref.[7]. ho=E,~Ep
= 15 20
IIl. QUANTUM TUNNELING WITH DISSIPATION M “min-1- (20)

We are mainly interested in the quantum tunneling phe-
nomena(rather than thermally assisted tunnelirand thus ~ The half-decay width is obtained from EO) as
we work on the case of zero temperature. The fluctuation-
dissipation theorem in the foriil3) is still useful to provide 1 1 1 7
a definite regularization of the manipulations in E¢#— Ernzzﬁ% w(n—m+he)=shor. (22)
(11), even though we work at zero temperature.
We start with the calculation of the decay rate of the state ) ) _ _ )
system described biylo(q) in Eq. (1). By takingH,=qQ as  tion for the damped oscillator
a perturbation, the lowest-order perturbation formula gives

Mg+ 7q+Mw?q=0 (22)
(nm+ )= (main) Pl 0l QIO)F
w(n—m =—1|(m|g|n
YT a @ and also with our starting assumption in E§).
If one denotes the proper self-energy correction to the
state|n) of the q system withH(q)|n)=E,|n) by ,(E),
or if one takes a sum over final states of the environmentaile" if the Green's function is written a$n|i/(E—|:|
. +ie)|ny=i[E—E,+ie+3,(E)] %, one can write a disper-
systemQ, we obtain sion relation

X 8(Ep—Ep—fiw), (15)

1(AIm3(E")dE’
En(E):;fo ST (23

—E—-ie

2
win-smmvtho) = KmlalmF [ KholQIO)F

XSEp—En—fiw)p(ho)d(ho)

with an infinitesimal positive constartand A a cutoff pa-
' rameter. The total Hamiltonian is written @$=H(q)

+qQ+Hy(Q). The imaginaryor absorptivé part of 2 ,(E)
(16)  is given by Eqs(16) and(19) as(in the lowest order iny)

B 27 22 ﬁwR 1
= =~ [(mlqn)| — 5 Rlw)x

fio=E,—Ep,
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1 7
Im 3 (E)= 5T o(E) Sa(En)=—2> Kmlalnm)P(E,—Ep)
2 7Th m
2 ho 1 A—[(Ey—Ep)/f]
= mlg|n)*— —R(w) n_—m i _
w3 KmalP R |‘ LBl o)
2
n . n ﬁ A 2
=72 KmlalmF(E-En 0(E-En), (29 _ﬁ[ —om N ;+§ K(mla|n)[*(En—Er)
which is a manifestation of unitarityan analog of the optical x| In +im6(E,— Em)” ’ 27)
theorem. The dispersion relatiofup to all orders in pertur- En—Em

bation ofgQ) follows from the fact tha® ,(E) is analytic in

the upper-half plane due to causality aBg(E) is real and Where we used the sum rule

regular along the negative real axis as a result of positive 52
definiteness of the HamiltoniaAo(q) + Ho(Q). One may nlglmy{mlaln}(E.— E, )= — (28)
continueX ,(E) to the lower-half plane along the negative Ern: (nlalm)(mia[m(En-E,) 2M

real axis byX ,(E—ie)=2,(E+ie€)*. The imaginary part of )

3 .(E) arises since the state) is not an eigenstate of the Which follows from

total H. [Relations(23) and (24) are of course derived from 22

second order perturbation theory. What we emphasize here is [a0.[9,Ho(a)]]=— e (29
that relation(23) is of more general validity.

We then have independently of the detailed form of the potentglq) for

the g system,Hy(q) = (1/2M) p?+V(q).

E'—En) 6(E'—En)dE’ The corrected energy eigenvalue of the stateis thus

A
$/B= 253 kmialp [

E'-E—ie given by
A(E' — ' W_g _
:lz |(m|q|n)|2f (E'-E,)dE E,’=E,—ReZX,(E,)
mh“m Em E'—E—ie€

hny A 7
=E,+s—— In———2, [(m|qg|n)|*(E
_WﬁEm |<m|q|n>| o ho+E,—E—ie m

—Epin E—E,

: (30

n
= 72 Kmlalm)P a4 +(E~En)

whereu specifies an arbitrary renormalization point, and the
f A do ] half-width of the staten) is given by

o @+ (En—E)lh—ie (25)

r U

- =Im 2 (E))=52> Kmla[n)P(En—Em) 0(Eq—Ep),
o . 2 (s

If we apply a very specific subtraction procedure to the (31)
above dispersion relation by subtracting the consfat¢rm

in expression(25), we obtain which is in fact the input to the dispersion relati¢a3).

. These relations are identical to those in a field-theoretical
__7 2 approach to the quantum tunneling with dissipafi@h
2n(E) Trﬁzn: Kmlaln) (B = Ex) Our formula(25) is valid for the general potential prob-
lem and is not restricted to quantum tunneling with dissipa-
J'A do (26) tion. We now concentrate on the tunneling problém be
o o+ (En—E)A—ie’ precise, quantum coherenc®r which we have(isolated
nearly degenerate states arising from quantum tunneling.
The above subtraction convention of Caldeira and Leggetfrom the formula forE(" in Eq. (30), we obtain[7]
[4] amounts to setting the contribution of the state to
3 .(E) to vanish atE=E,,: In other words, the dissipative 27 hwg
interaction does not influencE,(E) at the vanishing fre- e=Ej’—Ef’=e- %Kmqm'zf In(T) (32)
guency w=0. Physically this means that the shape of the
potential for theq system(which is defined at the static for the lowest two states, which arise from the splitting in-
limit) is not influenced by the termzA/) (n|g?ln) in-  duced by tunneling, of aeepdouble-well potentiaV(q)
duced by dissipation. This prescription of subtraction is thewith e=E;—E; the frequencyw,, which plays the role of
crux of the macroscopicquantum tunneling formulated in the cutoff parameter, is the curvature at the bottom of the
[4]. symmetric double-well potential. The energy splittirg
For sufficiently largeA, we have stands for the fundamental order parameter of macroscopic
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guantum tunneling. It is shown that the effects of other states

can be neglected for a deep potential.
The “renormalization-group” equation

dei(wg) — —
—00 o =~ me=—nale), (33
with
— 27
7= KolalL)P, (34)
gives an “improved” formula
e \7
€1= E( ﬁ_wo) (35)

if one normalizese; (% wy= €)= €. The self-consistency an-

satz[8] obtained by setting the infrared cutoff @f, namely,

e,=¢€(e1/hwg)”, then gives rise to the well-known formula

[4]

e \7A-m
6126(_) \ (36)

hwo

5027

him 7
2n(Ep)=— —A2 M2A<n|p2|n>

7 o[ [En—Em\® hA
+ 23 omlall| |55 T 22

+i7m0(E,—E)

] , (41)

where we used the sum rul€28) and

2

h
E|<m|q|n>|2<E Em =—<n|p2|n> (42)

The second term on the right-hand side of EHl) modifies
the kinetic term of the HamiltoniarHy(q)= (1/2M) p?
+V(q) for theg system and it may be natural to subtract it
away in the spirit of the macroscopic quantum tunneling of
Caldeira and Leggetft].

We thus finally obtain the corrected eigenvalue to the or-
der linear iny,

EV=E,~Re3 (E,)=E +ﬁ—A2
n n n n n 4 M

which suggests a strong suppression of quantum coherence

for n—1.

Super-Ohmic dissipation

We next analyze the case of super-Ohmic dissipation

R(w)=7no?, (37

which is related to the emission of electromagnetic fields inl'®S:
the vacuun{1]. The calculation proceeds in a manner iden-

tical to that of Ohmic dissipation and we obtain

W(E)= 7S Kmial)P?

" fA(E’ —En[(E'—En)/%]1?60(E' —E,,)dE’
0 E'—E-ie ’

(38)
with

m

2
) O(E—E,,).
(39

E_
Im 2(E)= %; |<m|q|n>|2<E—Em>( -

After the subtraction as in E426) above, we obtain

E—Eq\2
a5

A?[E—Ep
2(8)= 23 kmlalf| | =5

E—E,\° | A
7 E-E,

+

+imO(E— Em)“
(40)

We thus have

hA
En_Em

_ 3
- 73 el =5 n

(43

where the second term proportional A3 does not influence
the observable energy splitting between two energy eigenval-

It has been shown in Reff7] that one obtains the energy
splitting of lowest two levels in the deep double-well poten-
tial V(q) from Eq.(43) as[see also Eq(32)]

(O] A
€' +3eIn|—| |,
o

27mM

€=€+ (44

where €’ is the tunneling energy splitting of the third and
fourth energy levels in the deep double-well potential. If one
accepts the above subtraction procedure, which appears to be
reasonable in the spirit of the Caldeira-Leggett model, the
tunneling splitting (and, consequently, tunneling itselis
rather enhanced by the super-Ohmic dissipation femall

7.

I1l. DISCUSSION AND CONCLUSION

We have demonstrated that some of the essential physical
contents of the Caldeira-Leggett model for the macroscopic
quantum tunneling with dissipation can be reproduced from
the fluctuation dissipation theorem of Callen and Welton
(13) and the dispersion relatiorier unitarity and causalidy
The existence of dissipation implies a fluctuation in the force
field, which in turn modifies the tunneling frequency via dis-
persion relations. The present approach is consistent with a
field-theoretical formulation of the Caldeira-Leggett model
in Ref. [7], where the unitarity and causality are explicitly
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incorporated. An explicit form of the Lagrangian contains effect similar to dissipation. The effective dressed hopping

more information and thus one can explicitly evaluate cor-frequencyA.¢¢/% is obtained at zero temperature [83%

rections to the energy eigenvalue in the second ordey; of

see, for exampld,7]. Aeri=A
We note that formul&30) is also valid for a more general

class of interaction between tliesystemH,(q) and theQ

systemH(Q) defined by

A K
5) , (47)

whereA/% stands for the bare hopping frequency anhds
the Fermi energy, wittK a positive coupling constant. In

H,=F(q)Q (45) fact, the entire derivation of Eq47) in [9] is almost identi-
: ' cal to our calculation of the Ohmic dissipation in E§5).
In this case formuld30) is replaced by The interaction term in the atom hopping has the structure

.
= En= 27 KmF(@) | (Ey—Enlin =i . i Noady 9

(46)  in the lowest two-level truncation of the Tatomic states de-

: I . . scribed by the Pauli matriy, anda, anda, stand for an-

The (_jynam|cs oHO(Q),_Whlch is characterized b&l(_w)’ IS nihilation );md creation operxators ofkthe coknduction electron.
specified by a diagnosis by means 8f=0e,(t)Q in EQ.  The second-order perturbation theory gives rise to a relation
(3), but we can choose a more general interaction (B8 corresponding to the dispersion relation in E20). The as-

for an actual analysis. The analysis of quantum coherencgumption of slowly varyingN, |2 after the angular integral
such as Eq(32) is, however, dependent on the detailed prop-of k and k' gives rise to an(effective Ohmic dissipation
erties ofF(q). [i.e., R(w)=const in our notatioh as is expected for a

If one draws an analogy of quantum dissipative phenomeharge movement in a metal. In other workls,in Eq. (48)
ena with spontaneous symmetry breakdown characterized hy effectively simulated by the fluctuation-dissipation theo-
the Nambu-Goldstone theorel], which specifies the zero rem of Callen and Welton with o= e(k’) — e(K) in the re-
mass excitation of _the vacuum, the present approach corr@yyicted domain of frequendyw and temperature. Kond8]
SPQndS to a specn_‘lca'_[lon of Nambu-G_OldStone bosons a”é’uggests that the above reduction of the hopping frequency
their physical implications on the basis of current algebrg47) is understood as a variant of Anderson’s orthogonality
and low-energy theorem. On the other hand, the Caldeiraneorem[10] (i.e., the overlap integral of two Fermi gas
Leggett model corresponds to an effective field the@y  states decreases when a large number of degrees of freedom
nonlinearoc mode) for Nambu-Goldstone bosons; an effec- gre involved. This viewpoint may provide an alternative in-
tive field theory, once an explicit form of the Lagrangian is teresting physical picture for the suppression of quantum
given, naturally contains more information, thougbt all of  tnneling with Ohmic dissipatiofill], although a precise
the properties of the effective Lagrangian stand for the gecorrespondence between these two ideas, Ohmic dissipation
neric properties of Nambu-Goldstone bosons. In the contexiing the orthogonality theorem, remains to be clarified.
of quantum dissipation, it is knowfB] that any system of A theoretical basis for the fluctuation-dissipation theorem
dissipativeQ freedom can be approximated by an infinite compared with the Nambu-Goldstone theorem is less solid,
number of harmonic oscillators if the second order in perturmainly due to the difficulty in describing a deviation from
bation[i.e., linear response as in E@)] yields satisfactory  thermal equilibrium, but if one observes dissipative phenom-
accuracy. However, the true dynamics of @eystem could  ena characterized by a well-definBfw), one may specify
of course be quite different from an infinite number of har-the essential physical properties of the dissipative medium
monic oscillators. As for practical physical_implications of by the relation(10) and the theorenil3). A message of the
this consideration, the behavior of E§6) for —1 is more  present paper is that this information alone is sufficient to
dependent on the detailed model of fQesystem since it is analyze the essential physical effects of dissipation on mac-
sensitive to the detailed dynamics in the higher ordersy;of r0Scopic quantum coherence.
our analysis of Eq(36) is valid for n<<1.

We also note an interesting similarity between the quan-
tum tunneling with Ohmic dissipation and the impurity atom | thank M. Ueda for illuminating discussions on the
hopping problem in a metdB]. In the latter problem, the fluctuation-dissipation theorem and for calling Ré&f| to my
atom is dressed by conduction electrons that give rise to aattention.
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